Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Int J Mol Sci ; 22(21)2021 Oct 26.
Article in English | MEDLINE | ID: covidwho-1488607

ABSTRACT

Emerging evidence suggests that males are more susceptible to severe infection by the SARS-CoV-2 virus than females. A variety of mechanisms may underlie the observed gender-related disparities including differences in sex hormones. However, the precise mechanisms by which female sex hormones may provide protection against SARS-CoV-2 infectivity remains unknown. Here we report new insights into the molecular basis of the interactions between the SARS-CoV-2 spike (S) protein and the human ACE2 receptor. We further report that glycosylation of the ACE2 receptor enhances SARS-CoV-2 infectivity. Importantly, estrogens can disrupt glycan-glycan interactions and glycan-protein interactions between the human ACE2 and the SARS-CoV-2 thereby blocking its entry into cells. In a mouse model of COVID-19, estrogens reduced ACE2 glycosylation and thereby alveolar uptake of the SARS-CoV-2 spike protein. These results shed light on a putative mechanism whereby female sex hormones may provide protection from developing severe infection and could inform the development of future therapies against COVID-19.


Subject(s)
Estrogens/chemistry , Estrogens/metabolism , SARS-CoV-2/chemistry , SARS-CoV-2/physiology , Virus Internalization/drug effects , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Animals , Biological Transport , COVID-19/metabolism , Disease Models, Animal , Estrogens/pharmacology , Glycosylation/drug effects , Human Umbilical Vein Endothelial Cells , Humans , Male , Mice, Inbred C57BL , Models, Molecular , Molecular Docking Simulation , Molecular Dynamics Simulation , Polysaccharides/chemistry , Polysaccharides/metabolism , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Tunicamycin/pharmacology , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL